MatematikaSMA kelas X by ciean8oriflame. Matematika SMA kelas X. RPP KD 3.2 K13 MENJELASKAN DAN MENENTUKAN PENYELESAIAN PERTIDAKSAMAAN RASIONAL DAN IRASIONAL SATU VARIABEL. Oslan Khalid. rpp pertidaksamaan rasional dan irasional.docx. LKPD Pertidaksamaan irasional satu variabel. Nurulita Fitriana. Latihan Soal Pkn
2 Modul Pembelajaran Matematika SMA SMK Kelas 10 (X) KD 3.2. Menjelaskan dan menentukan penyelesaian pertidaksamaan rasional dan irasional satu variabel dan KD 4.2. Menyelesaikan masalah yang berkaitan dengan pertidaksamaan rasional dan irasional satu variabel. 3) Modul KD 3.3.
Kelas/ Semester : X / Ganjil Materi Pokok : Pertidaksamaan rasional, dan irrasional satu variabel Alokasi Waktu : 10 x 45 Menit ( 5 x pertemuan ) I. Tujuan Pembelajaran Siswa diharapkan dapat : 1. Mendefinisikan tentang konsep pecahan 2. Mengidentifikasikan tentang bentuk pertidaksamaan pecahan 3.
1 Memahami konsep persamaan dan pertidaksamaan nilai mutlak dari bentuk linear satu variabel, pertidaksamaan rasional dan irasional satu variabel dan sistem pertidaksamaan dua variabel (linear-kuadrat dan kuadrat-kuadrat) dan penggunaanya dalam menyelesaikan kehidupan sehari-hari 2.
RPPMATEMATIKA KELAS 10 MA KURIKULUM 2013 Persamaan dan Pertidaksamaan Nilai Mutlak Linear Satu Variabel - Sehubungan dengan kegiatan belajar mengajar yang dialihkan dirumahaja, maka mau tidak mau Pendidik harus menyiapkan dan memanfaatkan media online sebagai tempat untuk melangsungkan proses pembelajaran. Adapun RPP ini dibuat dengan
Ax7G. 10 MIA SMA Sub Materi 3 Peta Belajar Bersama Peta Belajar Bersama Pertidaksamaan Rasional Konsep Pertidaksamaan Rasional Satu Variabel Contoh Pertidaksamaan Rasional Satu Variabel Latihan 1 Latihan 2 Latihan 3 Latihan 4 Latihan 5 Pertidaksamaan Irasional Konsep Pertidaksamaan Irasional Satu Variabel Bentuk-Bentuk Pertidaksamaan Irasional Latihan 1 Latihan 2 Latihan 3 Latihan 4 Latihan 5 Peta Belajar Bersama Halo, Sobat Pintar! Sebelum masuk ke materi Pertidaksamaan Rasional dan Irasional, yuk kita simak terlebih dahulu Peta Belajar Bersama dulu ya! Yuk, mulai belajar bersama ! Konsep Pertidaksamaan Rasional Satu Variabel Setelah membahas mengenai pertidaksamaan nilai mutlak, pernahkah kalian menemukan soal pertidaksamaan dengan bentuk pecahan atau bahkan bentuk akar? Wah, kelihatannya sulit ya untuk diselesaikan. Eitss.. ternyata mudah kok menyelesaikannya jika kalian tahu triknya! Yuk kita pelajari bersama mengenai pertidaksamaan rasional dan pertidaksamaan irasional. Pertidaksamaan rasional adalah bentuk pertidaksamaan yang memuat fungsi rasional, yaitu fungsi yang dapat dinyatakan dalam bentuk Bentuk umum dari pertidaksamaan rasional dapat dituliskan Note Next untuk memahami contoh soal dari bentuk pertidaksamaan rasional di atas, ya, Sobat! Langkah-langkah untuk menentukan himpunan penyelesaian pertidaksamaan rasional yaitu Nyatakan fungsi dalam bentuk umum Tentukan pembuat nol pada pembilang dan penyebut, misal fx=0 dan gx=0 Perhatikan syarat bahwa penyebut tidak boleh sama dengan nol Buat garis bilangan, kemudian tuliskan pembuat nol sesuai urutan pada garis bilangan Tentukan tanda pada untuk tiap interval pada garis bilangan Tentukan daerah penyelesaiannya dengan ketentuan pertidaksamaan > atau >, daerah penyelesaiannya berada pada interval bertanda positif pertidaksamaan < atau <, daerah penyelesaiannya berada pada interval bertanda negatif 7. Himpunan penyelesaiannya adalah interval yang memuat daerah penyelesaian LARANGAN!!! Hal-hal yang tidak dibenarkan dalam menyelesaikan pertidaksamaan rasional, yaitu Kali silang, Mencoret fungsi ataupun faktor yang sama pada pembilang dan penyebut Materi lebih lengkap ada di Apps Aku Pintar Download GRATIS Aplikasi Aku Pintar Sekarang Juga! Materi lebih lengkap ada di Apps Aku Pintar Download GRATIS Aplikasi Aku Pintar Sekarang Juga! Materi lebih lengkap ada di Apps Aku Pintar Download GRATIS Aplikasi Aku Pintar Sekarang Juga! Materi lebih lengkap ada di Apps Aku Pintar Download GRATIS Aplikasi Aku Pintar Sekarang Juga! Materi lebih lengkap ada di Apps Aku Pintar Download GRATIS Aplikasi Aku Pintar Sekarang Juga! Materi lebih lengkap ada di Apps Aku Pintar Download GRATIS Aplikasi Aku Pintar Sekarang Juga! Konsep Pertidaksamaan Irasional Satu Variabel Pertidaksamaan irasional adalah bentuk pertidaksamaan yang fungsi pembentuknya berbentuk akar, baik fungsi pada ruas kiri, ruas kanan ataupun kedua ruas. Pertidaksamaan irasional akan terdefinisi apabila syarat akar terpenuhi yaitu fungsi dalam akar yang bernilai lebih dari atau sama dengan nol. Langkah-langkah untuk menyelesaikan pertidaksamaan irasional yaitu Penuhi syarat akar sampai diperoleh interval tertentu Mengkuadratkan kedua ruas, kemudian sederhanakan dengan operasi aljabar sampai diperoleh interval tertentu Solusi akhir berasal dari irisan antara interval syarat akar dengan interval hasil mengkuadratkan kedua ruas. Materi lebih lengkap ada di Apps Aku Pintar Download GRATIS Aplikasi Aku Pintar Sekarang Juga! Materi lebih lengkap ada di Apps Aku Pintar Download GRATIS Aplikasi Aku Pintar Sekarang Juga! Materi lebih lengkap ada di Apps Aku Pintar Download GRATIS Aplikasi Aku Pintar Sekarang Juga! Materi lebih lengkap ada di Apps Aku Pintar Download GRATIS Aplikasi Aku Pintar Sekarang Juga! Materi lebih lengkap ada di Apps Aku Pintar Download GRATIS Aplikasi Aku Pintar Sekarang Juga! Materi lebih lengkap ada di Apps Aku Pintar Download GRATIS Aplikasi Aku Pintar Sekarang Juga! Materi Matematika Wajib SMA - 10 MIA Lainnya
Pertidaksamaan Rasional dan Irasional Satu Variabel – Matematika Wajib SMA Sampel materi untuk guru yang ingin cari soal latihan. Temukan bank soal lengkap dan update dengan cara mendaftar gratis. Kirim soal-soal ini ke murid di kelas Bapak/Ibu Guru lewat Google Classroom, dalam bentuk kuis online, tautan kuis, file kuis, atau cetak langsung! Pilih Kelas 1. Diberikan pertidaksamaan −2x+86x−1≥0\frac{-2x+8}{6x-1}\ge0. Himpunan penyelesaian dari pertidaksamaan tersebut adalah .... Pembahasan DiketahuiPertidaksamaan −2x+86x−1≥0\frac{-2x+8}{6x-1}\ge0 . . . *DitanyaHimpunan penyelesaian dari pertidaksamaan tersebut?JawabPertidaksamaan * merupakan pertidaksamaan rasional linear. Perlu diingat pertidaksamaan rasional linear mempunyai bentuk umumax+bcx+d,\frac{ax+b}{cx+d}, atau ax+bcx+d≥n\frac{ax+b}{cx+d}\ge n dengan a, b, c, d, dan na,\ b,\ c,\ d,\text{ dan }n merupakan menyelesaikan pertidaksamaan rasional linear adalah denganMencari harga nol dari pertidaksamaan tersebut, dengan mengganti tanda pertidaksamaan menjadi tanda sama dengan =, kemudian mencari nilai nol untuk pembilang maupun penyebut. Perlu diingat bahwa penyebut tidak boleh sama dengan nilai xx yang sesuai dengan tanda dicari harga nol dari pertidaksamaan *, didapat−2x+86x−1=0\frac{-2x+8}{6x-1}=0 . . . **Untuk pembilang diperoleh−2x+8=0-2x+8=0 ⇔8=2x\Leftrightarrow8=2x ⇔82=x\Leftrightarrow\frac{8}{2}=x ⇔4=x\Leftrightarrow4=x Untuk penyebut diperoleh6x−1=06x-1=0 ⇔6x=1\Leftrightarrow6x=1 ⇔x=16\Leftrightarrow x=\frac{1}{6} Karena x=16x=\frac{1}{6} diperoleh dari penyebut dan penyebut tidak boleh sama dengan nol, maka x=16x=\frac{1}{6} tidak memenuhi pertidaksamaan *.Untuk x0\frac{ bernilai positif.Untuk x>4x>4, diambil sebagai sampel x=5x=5 dapat dipilih yang lain. Berdasarkan persamaan ** diperoleh− fxgx0,\ \frac{f\leftx\right}{g\leftx\right}>, kita cari hasil yang pada −43≤x2x>2 Ingin coba latihan soal dengan kuis online? Kejar Kuis 3. Tentukan solusi dari pertidaksamaan x2−5x−6x2+x+10, fxgx0,\ \frac{f\leftx\right}{g\leftx\right}0, fxgx0,\ \frac{f\leftx\right}{g\leftx\right}0h\leftx\right>0. Diperolehhx>0h\leftx\right>0 ⇔x2−2x−35x−4>0\Leftrightarrow\frac{x^2-2x-35}{x-4}>0 . . . *Pertidaksamaan * merupakan pertidaksamaan rasional linear-kuadrat. Perlu diingat pertidaksamaan rasional linear-kuadrat memiliki bentuk umum sebagai berikutax2+bx+xpx+q≤n\frac{ax^2+bx+x}{px+q}\le n atau px+qax2+bx+x≤n\frac{px+q}{ax^2+bx+x}\le ndengan a, b, c, p, q,a,\ b,\ c,\ p,\ q, dan nn merupakan konstanta. Tanda pertidaksamaan ≤\le dapat juga berbentuk >Cara menyelesaikan pertidaksamaan rasional linear-kuadrat adalah denganMencari harga nol dari pertidaksamaan tersebut, dengan mengganti tanda pertidaksamaan menjadi tanda sama dengan =, kemudian mencari nilai nol untuk pembilang maupun penyebut. Perlu diingat bahwa penyebut tidak boleh sama dengan nilai xx yang sesuai dengan tanda dicari harga nol dari pertidaksamaan *. Diperolehx2−2x−35x−4=0\frac{x^2-2x-35}{x-4}=0 Untuk pembilang diperolehx2−2x−35=0x^2-2x-35=0 . . . **Nilai p, qp,\ q sehingga p+q=−2p+q=-2 dan pq=−35pq=-35 adalah p=−7p=-7 dan q=5q=5 Akibatnya persamaan ** dapat difaktorkan menjadix+px+q=0\leftx+p\right\leftx+q\right=0⇔x−7x+5=0\Leftrightarrow\leftx-7\right\leftx+5\right=0 Artinyax−7=0⇔x=7x-7=0\Leftrightarrow x=7 ataux+5=0⇔x=−5x+5=0\Leftrightarrow x=-5 Untuk penyebut diperolehx−4=0x-4=0 ⇔x=4\Leftrightarrow x=4 Karena x=4x=4 diperoleh dari penyebut dan penyebut tidak boleh sama dengan nol, maka x=4x=4 tidak memenuhi pertidaksamaan *.Berdasarkan harga nol yang diperoleh, pertidaksamaan * dapat ditulis menjadix−7x+5x−4>0\frac{\leftx-7\right\leftx+5\right}{x-4}>0 . . . ***Diperhatikan tabel yang menunjukkan tanda nilai yang diperoleh pada batasan/interval yang dinyatakan dalam garis bilangan sebagai berikutPertidaksamaan *** memiliki tanda >> artinya yang diminta adalah hasil dengan tanda positif dan x=7, x=−5x=7,\ x=-5 bukan merupakan penyelesaian sebab tidak memuat sama dengan. DiperolehJadi batasan nilai xx yang memenuhi adalah −57x>7 6. Hambatan total dari dua komponen listrik yang disusun paralel adalahR1R2R1+R2\frac{R_1R_2}{R_1+R_2} dengan R1R_1 dan R2R_2 adalah hambatan masing-masing komponen dalam ohm.Jika diketahui R1R_1 adalah 20 ohm, berapakah batas nilai hambatan komponen kedua agar besar hambatan total kurang dari 15 ohm? Pembahasan DiketahuiR1=20R_1=20R1R2R1+R20, fxgx0,\ \frac{f\leftx\right}{g\leftx\right}10−x2x+2>\sqrt{10-x^2}! Pembahasan DiketahuiPertidaksamaan x+2>10−x2x+2>\sqrt{10-x^2}DitanyaSemua nilai xx yang merupakan memenuhi pertidaksamaan?DijawabPertidaksamaan irasional dalam bentuk akar memiliki bentuk umumfx≤gx, fxgx\sqrt{f\leftx\right}>\sqrt{g\leftx\right}dengan fxf\leftx\right dan gxg\leftx\right berupa konstanta maupun polinom serta ruas kanan bisa juga bukan dalam bentuk menyelesaikan pertidaksamaan irasional dalam bentuk akar adalahMencari syarat akar atau numerusnya jika dalam bentuk akar, yaitu fx≥0f\leftx\right\ge0 dan gx≥0g\leftx\right\ge0Mengkuadratkan kedua ruas, kemudian selesaikanPenyelesaiannya merupakan irisan dari bagian 1 dan 2Pada soal diketahui pertidaksamaanx+2>10−x2x+2>\sqrt{10-x^2}... 1yang berarti fx=x+2f\leftx\right=x+2 dan gx=10−x2g\leftx\right=10-x^2Setelah mendefinisikan kedua fungsi tersebut, kita cari syarat akar untuk gxg\leftx\rightgx≥0g\leftx\right\ge0⇔ 10−x2 ≥010-x^2\ \ge0⇔ x2−10≤0x^2-10\le0 ... 2Pertidaksamaan 2 merupakan pertidaksamaan kuadrat. Perlu diingat bahwa pertidaksamaan kuadrat mempunyai bentuk umumax2+bx+c0, atau ax2+bx+c≥0ax^2+bx+c0,\text{ atau}\ ax^2+bx+c\ge0dengan a, b, ca,\ b,\ c merupakan konstanta dan a≠0a\ menyelesaikan pertidaksamaan kuadrat adalahMemastikan salah satu ruas pertidaksamaan adalah nol dan koefisien x2x^2 pembuat nol persamaan x1x_1 dan x2x_2 merupakan pembuat nolnya dengan x1> dengan menghilangkan tanda sama dengannyax1≤x≤x2x_1\le x\le x_2, untuk tanda pertidaksamaan ≤\le atau 10−x22\leftx+2\right^2>\left\sqrt{10-x^2}\right^2⇔ x+22>10−x2\leftx+2\right^2>10-x^2⇔ x2+4x+4>10−x2x^2+4x+4>10-x^2⇔ 2x2+4x−6>02x^2+4x-6>0Bagi kedua ruas dengan 2⇔ x2+2x−3>0x^2+2x-3>0⇔ x+3x−1>0\leftx+3\right\leftx-1\right>0Pembuat nolnya adalahx+3=0 ⇔ x=−3x+3=0\ ⇔\ x=-3 ataux−1=0 ⇔ x=1x-1=0\ ⇔\ x= hasilnya, −3 > sehingga x 1x\ >\ 1. ***Solusi pertidaksamaan 1 yang diberikan pada soal adalah yang memenuhi kondisi *, **, dan ***. Solusinya ditunjukkan dengan daerah yang beririsan di garis bilangan berikut, ditunjukkan dengan dua warna yang batasan nilai xx yang memenuhi pertidaksamaan tersebut adalah 110−323+2>\sqrt{10-3^2}⇔ 5>10−95>\sqrt{10-9}⇔ 5>15>\sqrt{1}⇔ 5>15>1 ... 4Pernyataan 4 benar. Jadi, solusi terbukti memenuhi pertidaksamaan. 8. Selesaikan pertidaksamaan x+2>x−2\sqrt{x+2}>\sqrt{x-2}! Pembahasan DiketahuiPertidaksamaan x+2>x−2\sqrt{x+2}>\sqrt{x-2}DitanyaSolusi dari pertidaksamaanDijawabPertidaksamaan irasional dalam bentuk akar memiliki bentuk umumfx≤gx, fxgx\sqrt{f\leftx\right}>\sqrt{g\leftx\right}dengan fxf\leftx\right dan gxg\leftx\right berupa konstanta maupun polinom serta ruas kanan bisa juga bukan dalam bentuk menyelesaikan pertidaksamaan irasional dalam bentuk akar adalahMencari syarat akar atau numerusnya jika dalam bentuk akar, yaitu fx≥0f\leftx\right\ge0 dan gx≥0g\leftx\right\ge0Mengkuadratkan kedua ruas, kemudian selesaikanPenyelesaiannya merupakan irisan dari bagian 1 dan 2Pada soal diketahui pertidaksamaanx+2>x−2\sqrt{x+2}>\sqrt{x-2} ... 1yang berarti fx=x+2f\leftx\right=x+2 dan gx=x−2g\leftx\right= mendefinisikan kedua fungsi tersebut, kita cari syarat akar untuk fxf\leftx\right dan gxg\leftx\right.fx≥0f\leftx\right\ge0x+2≥0x+2\ge0 ⇔ x≥−2x\ge-2 *gx≥0g\leftx\right\ge0x−2≥0x-2\ge0 ⇔ x≥2x\ge2 **Sekarang, kita kuadratkan pertidaksamaan 1.x+22>x−22\left\sqrt{x+2}\right^2>\left\sqrt{x-2}\right^2⇔ x+2>x−2x+2>x-2 ... 2Untuk berapa pun nilai xx riil, pertidaksamaan di atas akan selalu benar. Jadi, solusi dari pertidaksamaan 2 adalah x∈ℜx\in\Re ***.Solusi pertidaksamaan 1 adalah irisan dari solusi *, **, dan ***.Jadi, jawabannya adalah x≥2x\ x≥2x\ge2, kita gunakan x=3x=3 untuk dimasukkan ke pertidaksamaan 1⇔ 3+2>3−2\sqrt{3+2}>\sqrt{3-2} ⇔ 5>1\sqrt{5}>\sqrt{1} ⇔ 5>1\sqrt{5}>1 ... 3Pernyataan 3 benar. Jadi, solusi tersebut terbukti memenuhi pertidaksamaan. Ingin tanya tutor? Tanya Tutor 9. Solusi dari pertidaksamaan 3x+12>0\sqrt{3x+12}>0 adalah .... Pembahasan Pertidaksamaan irasional memiliki bentuk umumfx≤gx, fxgx\sqrt{f\leftx\right}>\sqrt{g\leftx\right}dengan fxf\leftx\right dan gxg\leftx\right berupa konstanta maupun polinom serta ruas kanan bisa juga bukan dalam bentuk menyelesaikan pertidaksamaan irasional adalahMencari syarat akar / numerusnya, yaitu fx≥0f\leftx\right\ge0 dan gx≥0g\leftx\right\ge0Mengkuadratkan kedua ruas, kemudian selesaikanPenyelesaiannya merupakan irisan dari bagian 1 dan 2Pada soal diketahui pertidaksamaan irasional 3x+12>0\sqrt{3x+12}>0, artinya fx=3x+12f\leftx\right=3x+12 dan gx=0g\leftx\right=0Akan dicari syarat akarnya, diperolehfx≥0f\leftx\right\ge0⇔3x+12≥0\Leftrightarrow3x+12\ge0⇔3x≥−12\Leftrightarrow3x\ge-12⇔x≥−123\Leftrightarrow x\ge\frac{-12}{3}⇔x≥−4\Leftrightarrow x\ge-4Kemudian kuadratkan kedua ruas lalu selesaikan, didapat3x+122>02\left\sqrt{3x+12}\right^2>0^2⇔3x+12>0\Leftrightarrow3x+12>0⇔3x>−12\Leftrightarrow3x>-12⇔x>−123\Leftrightarrow x>\frac{-12}{3}⇔x>−4\Leftrightarrow x>-4Solusi pertidaksamaan yang diberikan pada soal adalah yang memenuhi x≥−4x\ge-4 dan x>−4x>-4, yaitu x>−4x>-4 10. Diketahui grafik fungsi y=−x2−5x+py=-x^2-5x+p berada di bawah sumbu XX. Nilai pp yang tepat adalah .... Pembahasan Secara umum, jika diberikan grafik y=ax2+bx+cy=ax^2+bx+c dengan diskriminan D=b2−4ac0a>0, atau secara geometris berada di atas sumbu Negatif, terjadi ketika D<0D<0 dan a<0a<0, atau secara geometris berada di bawah sumbu soal diketahui fungsi y=−x2−5x+py=-x^2-5x+p berada di bawah sumbu XX, maka a=−1, b=−5, c= b=-5,\ c=p. Dan memenuhi definit negatif yaitu a<0a<0 dan D<0D<0. Diperolehb2−4ac<0b^2-4ac<0⇔−52−4.−1.p<0\Leftrightarrow\left-5\right^2-4.\left-1\right.p<0⇔25+ p<\frac{-25}{4}⇔p<−254\Leftrightarrow p<-\frac{25}{4} Daftar dan dapatkan akses ke puluhan ribu soal lainnya! Buat Akun Gratis
pertidaksamaan rasional dan irasional satu variabel kelas 10